If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-192x+572=0
a = 12; b = -192; c = +572;
Δ = b2-4ac
Δ = -1922-4·12·572
Δ = 9408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9408}=\sqrt{3136*3}=\sqrt{3136}*\sqrt{3}=56\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-56\sqrt{3}}{2*12}=\frac{192-56\sqrt{3}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+56\sqrt{3}}{2*12}=\frac{192+56\sqrt{3}}{24} $
| -5(r+2=-71 | | 42=2l+14 | | 4=7x-2x^2 | | -6x-12=-4x-17 | | 4(x-36+5x=-48 | | 5n+4=8n+20 | | 90+x+5+x-5=180 | | 2x-23-17=180 | | 21u+71=18u+86 | | y*(y+5)+y=40 | | 6x-12÷3+4=18÷x | | 2.1h=18 | | 4p-3(p+2)=12 | | t=-4.9t^2+6t+0.6) | | 3x+(-4)=18+5x | | 3.5r=18.55 | | 5^3x=600 | | 4/×+2=6/2x-3 | | 13x-100=10x+20 | | 2x+11+4x+19+3x+15=180 | | 4x+188=6x+218 | | 3(x-5)=5(3x+1) | | 7x-11=9x+3 | | X^2-8x+272=0 | | 7.5x=-99.75 | | 5(b+3)+b=5(b-3)-1 | | 0.2x+5=0.6x-5 | | 0.5x+2=0.2x-3 | | -5(x+4)=3-(-5) | | 3x-14-6x+3=28-2x-3-7x | | 12(4^3x)=14x | | 3x+20+2x-3=59-4x+39 |